Bridgman's phase diagram³ shows that only α thallium (h.c.p.) should be expected in these experiments. However, guenched β thallium (f.c.c.) is stable at room temperature.4 An elongated

TABLE I. Summary of data on the effect of hydrostatic pressure on the superconducting transition of tin and thallium.^a

Authors	Pressure (atmos)	ΔT_{c} (°K)	$(\Delta T_e/\Delta P) \times 10^{-1}$ deg atmos ⁻¹
	For tin	-	
Sizoo and Onnesh	95 ,82°	-0.0027 -0.007	-3 -8.6°
Alekseyevskyd	21°	-0.001	-5
Kan, Lazarev, and Sudovstove	1730	-0.10	-5.8
Chester and Jones ^f	11 500 17 500	-0.52	-4.3
Grenier, Spöndlin, and Squires	60°	-0.0034	-5.50
Present work	<115		-4.9 ± 0.5
F	or thallium		
Kan, Lazarev, and Sudovstov ^h	1370	0.008	0.6
Chester and Iones!	13 400	-0.06	-0.4
Present work	<48	-0.00	1.3 ± 0.2

Presented at the Third International Conference on Low Temperature Physics and Chemistry, Houston, Texas, December 17, 1953.
^b G. J. Sizoo and K. Onnes, Leiden Comm. No. 180b (1925).
• Hydrostatic value deduced from tensile stress.
^d N. E. Alekseyevsky, J. Exptl. Theoret. Phys. (U.S.S.R.) 10, 746 (1940).
• Kan, Lazarev, and Sudovstov, Doklady Akad, Nauk. 69, 173 (1949).
^I See reference 2.
^I Grenier Spöndlin and Sauire Physics 10, 232 (1953).

Grenier, Spöndlin, and Squire, Physica 19, 833 (1953).
 ^h See reference 1.

specimen selected from particles produced by pouring molten thallium into liquid nitrogen had the same characteristics as previous samples.

These measurements, which will be reported in detail later, are being continued on specimens for which the crystal structure is known, using apparatus permitting appreciable increased accuracy of determination of the pressure coefficients at zero pressure.

¹ Kan, Lazarev, and Sudovstov, J. Exptl. Theoret. Phys. (U.S.S.R.) 18, ¹ Kan, Lazarev, and Guovesson, 91
825 (1948).
² P. F. Chester and G. O. Jones, Phil. Mag. 44, 1281 (1953).
³ P. W. Bridgman, Phys. Rev. 48, 893 (1935).
⁴ S. Sekito, Z. Krist. 74, 189 (1930).

Resistivity Changes in Copper, Silver, and Gold Produced by Deuteron Irradiation Near 10°K*

H. G. COOPER, J. S. KOEHLER, AND J. W. MARX Department of Physics, University of Illinois, Urbana, Illinois (Received February 19, 1954)

DREVIOUS research^{1,2} on various metals indicates that radiation damage introduced near liquid nitrogen temperature will anneal when held at the irradiation temperature. The present experiment was designed to obtain damaged specimens in which no thermally activated motion of the lattice defects occurs during irradiation.

 99.97 ± 0.02 percent pure wires of copper, silver, and gold were irradiated with 12-Mev deuterons. The wire diameters were 5 mils for the copper and silver and 4 mils for the gold. The maximum temperature during bombardment was 12°K for the first run and

TABLE I. Radiation-induced resistivity increases, in units of 10^{-7} ohm cm, after a flux of 10^{17} deuterons/cm².

	Point	Copper	Silver	Gold
A	extrapolating initial 12°K slope	2.3	2.6	3.8
B	(observed 12°K value)	1.9	2.0	3.1
С	extrapolating initial 135°K slope	0.9	1.4	2.6
D	(observed 135°K value)	0.6	1.0	1.9

16°K for the second. Even though the temperature difference small, the resistivity versus deuteron flux curves for the second all lie slightly below those of the first.

If the initial slope of the resistivity versus flux curves was va up to large flux, the resistivity increases produced in copper, silver and gold after 1017 deuterons per cm2 would be those given at point A in Table I. However a slight decrease in slope does ∞ . and the observed increases are those denoted as point B. They changes are to be compared with the point C and D values tained' with 12-Mev deuteron irradiation at 135°K, where point represents the values obtained by extrapolating the initial slope a flux of 10^{17} deuterons/cm² and point D the observed values i this flux.

After bombardment the specimens were allowed to warm, time to liquid nitrogen temperature and then to room temperature. The warmup rate was between 15 and 30°C per hour. The annealing out of damage during warmup was obtained by using a similar unbombarded specimen in a Wheatstone bridge circuit² so that the resistivity introduced by thermal oscillations can be eliminated if the two specimens are at the same temperature. Corrections ion temperature differences of specimen and dummy were obtained by comparison with warmups made before irradiation and after annealing to room temperature.

On holding for 48 hours at or slightly below the bombardment temperature, no change in resistivity (i.e., to ±0.1 percent) was observed. In copper and silver, abrupt drops in resistivity indicated that some rather unique annealing process occurred at about 40°K and 30°K, respectively. In gold no large low-temperature drops were found. The first two rows in Table II indicate the

TABLE II. Percentage of initial resistivity increase remaining after annealing to various temperatures.

Annealing temperature	Copper	Silver	Gold
35°K	90	78	97
45°K	50	77	93
77°K	41	69	86
220°K	25	32	55
300°K	7	10	10

magnitude of these processes and the third gives the percentage left after annealing to liquid nitrogen. Two possible processes that may explain these abrupt recoveries are the motion of interstitial atoms, which Huntington³ calculated would have an activation energy in the range 0.07 to 0.24 ev, or the recombination of very close interstitial-vacancy pairs as suggested previously.^{1,2}

A gradual decrease occurs in all three materials during the warmup to 220°K and then a more rapid process becomes important.1.2 The latter process is complete at about 255°K in copper, at approximately 240°K in silver, and at roughly 285°K in gold. The percentage remaining at both 220°K and 300°K is given in Table II.

We would like to thank Dr. W. K. Jentschke and the cyclotron group as well as Dr. D. E. Mapother and the cryogenics group for aid and assistance. In addition we would like to thank Mr. Frank Witt for the cryostat design.

* This work supported by the U. S. Atomic Energy Commission.
1 Marx, Cooper, and Henderson, Phys. Rev. 88, 106 (1952).
* A. W. Overhauser, Phys. Rev. 90, 393 (1953).
* H. B. Huntington, Phys. Rev. 91, 1092 (1953).

Line-Narrowing by Macroscopic Motion

F. BLOCH Stanford University, Stanford, California (Received February 19, 1954)

THE investigation of nuclear magnetism often demands extremely high resolution. A notable example is furnished by the structure in the groups of proton resonance lines discovered by Arnold and Packard.1 The separation of the three components of